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Abstract: This study examines secondary school students’ understandings and 
misconceptions when working with logarithms using a specially designed test 
instrument administered to 81 students in two Singapore schools.  Questions were 
classified by cognitive level.  The data were analysed to uncover the kinds of errors 
made and their possible causes. Students appear capable of doing routine 
calculations but less capable when answering questions which require higher levels 
of cognitive thinking.  In addition, many errors are not due to lack of knowledge but 
appear to be based on over-generalisation of algebraic rules. Suggestions for 
practice based on these findings are provided. 
 

Introduction 
Anecdotal evidence from teachers and colleagues over the years has consistently 
confirmed that teaching logarithms in secondary school is difficult; and, even 
though students can often “do” the questions that are in the text and on the 
examinations, their understanding of the fundamental nature of logarithms remains 
in doubt.  Indeed, when some of these students decide to pursue a teaching career 
and come for pre-service teacher training, we, as teacher educators, often find that 
they do not have the grasp of the conceptual underpinnings of logarithms that we 
would like, even though many have impressive mathematics examination grades. 
 
When logarithms were first developed in the seventeenth century, they 
revolutionised astronomy because of the way they permitted previously impossible 
calculations to be done.  Despite the fact that computers have taken over this 
computational role, logarithms are still tremendously important to the field of 
mathematics and science.  For example, logarithms are applied when studying 
population growth and determining the pH value of a solution.  Consequently, 
logarithms can still be found in secondary mathematics curricula around the world.  
Their importance, combined with the perceived difficulty, motivated this research 
project – a project designed to find out more about the ways in which students 
understand logarithms and the kinds of errors and misunderstandings that are 
evident. 
 
This paper reports the results of that research.  Although the study was undertaken 
in Singapore, the results were consistent with our own classroom experiences in 
different countries.  The paper begins with a review of the current research findings 
in this area and follows with a discussion of the method, instrumentation and 
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results.  The implications of the findings for classroom practice are presented as a 
way of helping teachers make use of this research in a meaningful way. 
 

Conceptual Framework 
As seasoned secondary school teachers familiar with how students process and 
develop mathematics concepts, our experiences provided a fundamental framework 
for our thinking about learning and teaching logarithms.  There appears to be very 
little research literature available to either confirm or deny the validity of our 
experiences.  There are, however, numerous studies focused on students’ learning 
difficulties in elementary algebra (see, for example, Booth, 1983; Milton, 1988; 
Mestre, 1989; Booth & Watson, 1990; Loh, 1991; Parish & Ludwig, 1994; Ng, 
1996; Schwartzman, 1996; Ong, 2000; Ng, 2002).  It thus seemed useful to frame 
the topic of logarithms within algebra itself so that these findings can be used to 
improve students’ learning of this particular topic. 
 
Although algebra is often thought of by students as merely strings of letters or a set 
of tools for manipulating them, it can be considered from four distinct perspectives:  
generalised arithmetic; a study of procedures; a study of relationships among 
quantities; and, a study of structure (Usiskin, 1988).  We have chosen to study the 
topic of logarithms from these four perspectives. 
 
If algebra is considered to be generalised arithmetic, then variables can be used to 
generalise patterns so that 3553 +=+  can be generalised as abba +=+ .  In this 
case, the letters do not represent unknowns or variables but can be thought of as 
symbolic place holders. In the context of logarithms, the pattern 

, 15log5log3log 222 =+ 18log6log3log 222 =+ and 21log7log3log 222 =+  
can be translated and generalised as xyyx aaa logloglog =+  in which the 
variables do not represent unknowns but rather are used to provide a generalised 
pattern.  
 
When viewing algebra as a study of procedures for solving certain kinds of 
problems, variables can be thought of as unknowns.  In the study of logarithms, 
questions do not usually require the translation of a word problem into a logarithmic 
equation, as is often the case in elementary algebra.  However, the translation may 
be articulated when a teacher explains the structure of the equation.  For example, to 
solve the equation 3)5(log2 =+x , the teacher may explain the equation as “3 is the 
power to which 2 needs to be raised to give 5 more than a certain number.  What is 
this number?”  The equation is then solved with an appropriate procedure, making 
use of students’ understanding of the meaning of logarithmic and exponential forms.  
A student might first convert the logarithmic equation into an exponential equation: 
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325 =+x  and then subtract 5 on each side, arriving at x = 3.  The “certain number” 
is 3 and the result is easily checked.  In this regard, x in the equation 

3)5(log2 =+x  is viewed as an unknown. 
 
Thinking of algebra as the study of relationships among quantities where a variable 
can be used as either an argument (the domain value of a function) or a parameter (a 
number on which other numbers depend) yields yet another perspective.  In other 
words, the variables become quantities in which a change in one variable 
determines a change in the other.  For example, in the area formula for a rectangle 

BLA ×= , where A, L and B represent the area, length and breadth respectively, a 
change in B produces a corresponding change in A when L remains a constant.  
Since none of the letters in the formula is being evaluated, the letters representing 
the various quantities do not display the true nature of an unknown.  Neither does 
the formula show the character of generalisation such as a + b = b + a.   The 
essence of this conception is evidenced when answering the question, “What 
happens to the value of A as B becomes larger and larger, given L = 10?”  Since 
the area formula BLA ×=  shows how the dimensions of a rectangle and its area 
are related, it would seem that both L and B are parameters while A is an unknown.  
But the status of L is changed from a parameter to a constant when the length 10 is 
substituted into the formula.  The letter L then represents a constant and not a 
parameter, leaving only the parameter B because B does not represent any particular 
number.  The question does not ask for a value of A, thus disqualifying it as an 
unknown.  Hence A is dependent on B, and is thus treated as an argument. 
 
Logarithms can be viewed as a study of relationships among quantities as well.  
While discussing the constraints on x in the relationship xy 2log= , students can be 
asked to explore the value of y as x approaches zero.  Here, there is no 
generalisation of a pattern, so neither x nor y is used to represent a generalised 
pattern.  Nothing specific is being solved for, thus eliminating the possibility that y 
is an unknown.  Rather x and y should be treated as the argument and the parameter 
respectively in this case. 
 
Although the study of algebra as the study of structures, such as groups or vector 
spaces where variables are treated as arbitrary objects related by certain algebraic 
rules, is not common in secondary school, it is important in higher mathematics.  
Many logarithmic questions can be considered from this perspective.  For instance, 
if students are asked to “Simplify 4log28log aa − ” and “Evaluate bblog ”, the 
expressions do not represent any pattern to be generalised, any equation to be solved 
nor any function.  The variables a and b are simply arbitrary objects which are 
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manipulated according to some operational set of rules that have been established in 
a logically consistent manner. 
 
Thus the role of algebra in the learning of logarithms is crucial and cannot be 
neglected if successful mastery of logarithms is to take place.  In fact, treating an 
algebraic expression as an object, rather than as a process, has been widely 
advocated by many researchers (Mason, 1996).   One advantage of this approach is 
that when students regard the pattern as an object, they perceive the pattern as a 
structure (Sfard, 1991).  Once students acquire such abilities to generalise and to 
perceive patterns as structures, they can progress further to develop more complex 
algebraic skills such as those needed in the learning of logarithms.  For example, 
when simplifying the expression 2log35log2 aa −  to a single logarithm, students 
need to treat both the terms  and  as objects which can be replaced 
by  and  respectively before applying the quotient law 

5log2 a 2log3 a

25loga 8loga

y
xyx aaa logloglog =−  to give the answer of 8

25loga . 

 
The incorrect perception of mathematical ideas as objects can also lead to problems.  
For example, students often see the notation for logarithm “log” as an object rather 
than as an operation.  Yen (1999), in his analysis of the types of errors Australian 
students made in the 1998 High School Certificate (HSC) Mathematics 
examination, showed that some students divided both sides of the equation 

xx ln2)127ln( =−  by “ln” as if it were a variable to obtain xx 2127 =−  when 
solving the equation.  A study conducted by Kaur and Boey (1994) in a Junior 
College in Singapore found that not all students realised that the simplification of 

3log
)4816log(      to

3log
4log8log16log +−+−  was incorrect.  It appears the root of the 

misconception is the mistaken notion that the “log” in the expression, , 
is a common factor.  This error is actually quite common and is often called the 
linear extrapolation error (Matz, 1980).  For example, when asked to solve the 
equation , students claim that 

yx loglog +

xx ln2)127ln( =− 12ln7ln)127(ln −=− xx , clearly 
treating “ln” as a variable and distributing it over  and 12 (Yen, 1999). x7
 
This error is not the only potential problem when working with logarithms, 
however.  Errors can also be caused by the students’ own formulation of rules that 
work well for some questions but not in general.  Lee and Heyworth (1999) reported 
that when a student was asked to simplify the expression 6log60log − , she 

responded with the answer 6log
60log .  An interview with this student showed that she 
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had established the rule that “you can always change subtraction to division when 
doing logarithms”, which she had used successfully in many cases.  A similar 
example was noted by Kaur and Boey (1994) where a few students were not aware 

that 3
12log3log

12log =  is an incorrect statement. The source of such misinterpretations 

is unclear.  Lopez-Real (2002) illustrated an incident in which the teacher used the 
phrase “if the logarithms of two numbers are the same, then these two numbers are 
the same” as a justification to explain the elimination of the “log” symbol in the 
expressions 22loglog =⇒= xx  and xxxx −=−⇒−=− 6103)6(log)103(log .  
Students, however, constructed their own understanding of this idea and used it to 

simplify the expression 
a

abba
log6

loglog 223 −
 to 

a
abba

6

223 − , clearly using a 

“cancelling” model.  Other common errors included evaluating  given 
 as , apparently thinking that 

14log2

807.27log2 = 7log214log 22 = yxxy aa loglog = . 
 
This way of conceptualising skills with logarithms provides a useful framework for 
thinking about how students could think about logarithms.  It does not give us 
detailed information about how they actually do operate with logs and the way in 
which they construct algebraic understandings in a logarithmic context.  This study 
was designed to help provide this kind of information.   The details of the study and 
its results follow in the next two sections. 
 

Method 
This research project involved the gathering of data through a detailed test 
instrument which was administered to students in three schools (two were used for 
the main study while the third was used to pilot the test instrument only). 
 
The Participants 
The three schools in the study, labelled A, B and C, are all mixed-gender, 
government schools.  School A (the pilot study school) has a student population of 
about 1100, is located in the eastern part of Singapore, and caters to the needs of a 
wide range of students from Secondary 1 to 5.  School B, also located in the eastern 
part of Singapore, has a population of about 1440 with an academically talented 
student base, all of whom are in the Express Stream.  School C opened in the year 
2000 in the western part of Singapore.  The student population in the three streams 
has grown from about 150 in the year 2000 to about 1000 in the year 2003 with 27 
classes from Secondary 1 to 4.  In terms of the students’ Primary School Leaving 
Examination (PSLE) aggregate scores, the cohort of Express students in School C is 
comparable to School A.   
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In total, 81 Secondary Three Express students, 42 from School B and 39 from 
School C, sat for the paper-and-pencil test in the main study.  Those from School B, 
comprising 25 male and 17 female, were randomly selected from six classes taught 
by different additional mathematics teachers whereas those from School C, 
comprising 17 male and 22 female, were mainly from the same class except for 
eight of them coming from another class.  The PSLE aggregate scores of the 81 
students varied from a low of 191 to a high of 246, suggesting a wide range of 
learning abilities.  
 
Test Instrument 
As no test instrument specifically to explore students’ learning difficulties, 
misconceptions and errors in logarithms was available, a new test instrument had to 
be developed to achieve the aims of this study.  The Test of Students’ 
Understanding of Logarithms (ToSUL) is a paper-and-pencil test with 47 items.  In 
devising the test instrument, an attempt was made to cover a wide range of typical 
test items found in the mathematics textbooks used in the schools although the test 
items did not involve natural logarithms.  Since one of the purposes of this study 
was to examine both skills and conceptual understandings of logarithms, 
considerable effort went into ensuring that the items represented a range of 
cognitive demand.   A modified version of Bloom’s Taxonomy (Bloom et al., 1956) 
was used to sort the items into three categories: Computation or Knowledge, 
Understanding and Application. 
 
The sorted items were given to three experienced colleagues who also classified the 
items.  Some suggestions for improvements of the test items, as well as the 
classification criteria for each category, were provided by them and the test 
instrument was revised based on their feedback.  At this point at least two out of 
three agreed on the classification of 90% of the items.  Samples of items in each 
category are provided in Figure 1 to give the reader a better sense of the kinds of 
things that were being tested. 
 
The Knowledge or Computation category comprised routine questions that require 
direct recall or application of the definition and laws of logarithms, as well as 
simple manipulation or computation with answers obtained within two to three 
steps.  Of the 47 test items in the main test, 23 items belong to this category.  The 
items in the Understanding category do not just simply involve recalling the 
definition or the application of logarithmic laws, but require some understanding of 
the underlying concepts of logarithms. The items may be familiar or textbook-like, 
but in them the student must decide not only what to do but how to do it. There 
were 14 test items in this category. Finally, items in the Application grouping 
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require the students to develop their own techniques for solving problems that they 
probably have not met in a textbook. There are 10 application items in the main test. 

Category Item 

Knowledge or Computation Given that a , find , in terms of m. 36=m 36loga

 

Understanding Given that , find , in terms of m. 36=ma a6log

Find the greatest possible integral value of p and 
the least possible integral value of q given that 

qp << 500log10 . 
Application 

 
Figure 1.  Sample Test Items by Category 

 
This instrument was piloted in school A with 43 students.  Based on the analysis of 
students’ responses, the queries some students had, and observations made during 
the invigilation of the pilot test, a few items were clarified or rewritten.  The time 
allocation of 90 minutes seemed slightly long and was revised to 75 minutes. 
 
Data Analysis 
The revised test was administered (without the use of calculators) to 81 students 
from Schools B and C on two separate days in July 2003. The resulting scripts were 
collected but because two students were unwell their scripts were rejected, leaving 
79 scripts for data analysis. Before marking them, each script, in the order they were 
collected, was coded from M1 to M79.  Once the marking was completed, a detailed 
item-by-item analysis was carried out by examining the participants’ responses for 
each test item using four categories: correct answer, incorrect answer, incomplete 
solution or blank solution.  Unlike the categories of “correct answer”, “incomplete 
solution” and “blank solution”, the responses under the “incorrect answer” category 
were more varied and had to be further analyzed into distinct categories based on 
some common features.  The “incomplete solution” category was created originally 
to account for those students whose solutions were incomplete but could possibly 
lead to a correct answer if done fully.  However, due to a low occurrence of such 
responses for each item, it was decided to merge this category with the “did not 
attempt” category, which accounted for those who left their solutions completely 
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blank.  Hence the categories of responses were narrowed from four to three. Lastly, 
the frequency of response for each category in a test item was computed. 
 
To illustrate, consider Item 6(b) (see Table 1).  The correct answer is indicated with 
an asterisk. All incorrect answers were further classified according to some common 
features that matched one of the following five categories: numerical values, in 
terms of m, in terms of a, in terms of logarithms or evaluating m or a.  Within each 
category, every frequently occurring incorrect answer was represented separately 
while the remaining incorrect answers were collectively grouped under “Others”.  
For instance, the response of 2

m  was regarded as a frequently occurring incorrect 

answer within the “in terms of m” category because of the 7 occurrences, high in 
comparison with the occurrences of other responses such as 

mmmmmm 1
2
11  and  , ,6 ,2 ,  that were grouped under “Others”.  The response of 

was seen twice, but it was treated as an incomplete solution for two 
reasons.  First, it would be unjustifiable to classify it as an incorrect answer when 

6log2 am =

Table 1 
Item Analysis for Test Item 6(b) 

Level: U Item 6b:  Given that , find log  in terms of m. 36=ma a6

Responses Frequency 

m
2  * 27 

Numerical values 
2 

Others 

 
2 
4 

In terms of m 

2
m  

Others 

 
7 
 

11 
In terms of a 2 

In terms of logarithms 2 
Evaluating m or a 

ma 6=  
2=m  

 
4 
1 

Did not attempt / attempted but working is incomplete 
6log2 am =  

17 
2 
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this partially correct response could possibly lead to the correct answer if the 
participant had proceeded further as follows: 

6log2 am =  
So 26log m

a =  

Since 6log
1

6log
a

a = , ma 2
6log =  

 
Second, it was shown in the working space provided and not in the answer space, so 
it was uncertain whether or not 6log2 am =  was the intended final response.  Hence 
this response was included under the “Did not attempt / attempted but working is 
incomplete” category. 
  
In addition, all incorrect answers found were analysed carefully to determine the 
potential causes of the errors.  The causes were categorised and then grouped so that 
eventually the number of distinct categories was collapsed to three:  Errors due to 
deficient mastery of concepts, rules and pre-requisite skills;  errors due to over-
generalisation; and, miscellaneous (indecipherable errors, slips due to incorrect 
arithmetic computations, incorrect algebraic manipulations, errors due to guessing, 
and bad handwriting). 
 
Given the establishment of these error types, all incorrect answers were then re-
analysed and coded accordingly. A few days later, they were coded again to ensure 
consistency in the coding process. 
 

Findings 
The results of this analysis yielded a rich source of information about students’ 
skills and knowledge when working with logarithms.   Here we present both general 
remarks about the participants’ level of understanding of logarithms by examining 
their performance in the three categories of test items and a more detailed 
description of some of their common errors and the possible misconceptions behind 
them. 
 
Overall Level of Understanding of Logarithms
Table 2 summarises the performance outcomes of 79 participants in the ToSUL test.  
The Knowledge or Computation category is the lowest cognitive level of the three 
while the Application category is the highest.  
 
Table 2 
Performance Outcomes in ToSUL 

Cognitive Level Number of 
Test Items 

Maximum 
Possible 

Number of 
Correct 

Responses 

Number of 
Correct 

Responses 

Percentage 
of Correct 
Responses 

Knowledge or 
Computation (K/C) 23 1817 1553 86% 

Understanding (U) 14 1106 729 66% 

Application (A) 10 790 304 39% 
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The table clearly indicates that the participants were very successful in answering 
Knowledge or Computation test items with a success rate of about 86%, but, 
predictably, when the items became more difficult, the percentages dipped to a level 
of about 66% for Understanding items and to a low of about 39% for Application 
items. These findings suggest that most participants were successful with routine 
and familiar items, however, they did not perform as well when the items deviated 
slightly from the familiar format or involved some applications of logarithms.  
These results are not surprising and are, in fact, consistent with Skemp’s (1976) 
ideas about instrumental and relational understanding and the relative difficulty of 
achieving each. 
 
Knowledge/Computation Items 
In this grouping, there were, however, a few questions with very poor success rates.  

For example, when asked for the value of ⎟
⎠
⎞

⎜
⎝
⎛

tt
1log , the response of  

suggested that some participants did not appreciate what it means to find the value 
of an expression.  In this case, the participants did not proceed further to evaluate 

as zero and hence to simplify the expression to -1.  Surprisingly, when asked 
to evaluate , 28% of the 79 participants gave the response of 10 rather than 
the expected 2.  It appears that even an instrumental understanding of logarithms is 
difficult for some students to acquire. 

11log −t

1logt

100lg

 
Understanding Items 
The overall success rate in this category was approximately 66%, suggesting that 
the participants had demonstrated a reasonable understanding of the underlying 
concepts of logarithms beyond simply recalling the definition or the direct 
application of logarithmic laws; however, none of the 14 test items in this category 
had more than 70 participants giving correct answers.  For example, although 69 
participants gave the correct answer 4 as the solution for the equation , 
only 27 participants provided a correct reason why it was the only solution.   When 
asked to express  in terms of m given , there were only 27 correct 
answers and about 25% of the participants did not attempt the question.  In an item 

which asked for the simplification of 

216log =w

m6log 36=ma

9log
27log

2

2 , responses of 3 (about 14%) and 

 (about 23%) were all relatively common.  Both responses appear to reveal 
some misconceptions.  The first arises probably by treating  as a variable 
whereas the latter arises possibly from participants thinking 

3log2

2log
)log(loglog yxyx ÷=÷ . 

 
Application Items 
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This category comprises a number of more challenging test items which required 
students to develop their own techniques for solving a problem which they probably 
had not encountered before.  A significant number of the participants did appear to 
have some difficulty with the items, with half of them not well answered.  The 
overall success rate for this category was approximately 39%, varying from a high 
of 67% to a low of 6%.  A typical question asked participants to express  and 

 respectively in terms of u when 
v3log

81logv vu 9log= , but it appeared that the majority 
of participants could not envisage the connection between the terms and the given 
condition.  Another example of a lack of depth in their understanding of logarithms 
was demonstrated in an item which asked them to find, with justification, the 
possible value(s) of x satisfying the equation )53(log)2(log)1(log 222 −=−++ xxx .  
They regularly found the two solutions of )53()2)(1( −=−+ xxx , but as many as 31 
participants failed to reject one of the two solutions by checking their validity.  Of 
those who checked, there were some who did not recognise that the response of 1, 
though a positive value, was inadmissible because two of the terms in the equation, 

 and , were undefined when )2(log2 −x )53(log2 −x 1=x .  The item with the lowest 

correct response rate (6%) asked them to evaluate the expression . What 
makes this interesting is that in spite of evidence showing high success rates in the 
conversion of logarithmic equations to their index form and vice-versa, students 
were not able to extend this understanding to a non-standard case. 

5log22

  
This summary analysis confirmed what we as teachers have typically suspected – 
students can often do the mechanical things we ask with logarithms but there is not 
always a high level of understanding behind these computations.  Examining the 
specific details of errors in order to try to establish possible reasons for them was 
the next stage of our analysis.  The following section discusses in more detail the 
system for categorising errors that was employed and suggests some plausible 
explanations for the kinds of errors that typify these categories. Based on this 
analysis, we conclude with a series of suggestions for teachers to help prevent 
students from developing these kinds of misconceptions. 
 

Discussion 
As detailed above, the various errors were sorted into three categories.  The most 
significant were errors due to over-generalisation (OG) of concepts and rules, 
followed by errors due to a deficient mastery of concepts, rules and pre-requisite 
skills (D).  Despite the fact that the miscellaneous (M) category encompasses quite a 
few different kinds of errors, it was the least common type.  Table 3 presents the 
number of incorrect answers in each category, together with the number of blank or 
incomplete solutions.  
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Table 3 
Classification of Unsuccessful Responses 

 

Incorrect answers  
Blank or 

Incomplete 
Solutions 

Response Codes OG D M X 

Number of Responses 369 318 196 241 

Percentages 33% 28% 17% 22% 

As revealed in the table, the high occurrence of errors due to over-generalisation 
suggests that when errors are made, they are not, as is often assumed, due to 
carelessness or insufficient practice on the part of students.  Rather it appears that 
these errors are due to misconceptions that students have actively constructed when 
they use their existing schema to interpret new ideas.  Therefore, unlike errors due 
to a deficient mastery of concepts, rules and pre-requisite skills which can be 
overcome by more practice, these misconceptions are grounded in faulty 
understanding and consequently cannot be addressed by more drill and practice of 
the standard type.  This is not to suggest that students could not benefit from more 
practice but rather to emphasise that the kind of practice is just as significant as the 
quantity. 
 
Consider, for example, errors that are categorised as being due to over-
generalisation.  Consistent with the findings by Kaur and Boey (1994) and Yen 
(1999), the typical mistake of assuming  is a variable rather than an operation 
was very much in evidence in this study.  A typical manifestation occurred when 

students used the change-of-base law to rewrite   as 

alog

100lg 10lg
100lg  and then simplify 

it by cancelling lg from both the numerator and the denominator, resulting in the 
response of 10.  This mistake of cancelling  or lg from both the numerator and 
the denominator is probably generalised from the algebraic rule that 

alog

wywx  can be 

simplified to yx  by the cancellation of the variable w from the numerator and the 

denominator. 
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Other than this type of error, the conceptualisation of  as a variable also led to 
other errors, again possibly as a result of over-generalisation of rules.  For instance, 
it was quite common to find participants treating  as a common factor and 
factorising  into 

alog

alog
yx aa loglog + )(log yxa + , just like factorising  into 

. For instance, some participants simplified 
yx 22 +

)(2 yx + 3log26log xx −  correctly to 

, but, surprisingly, they continued by treating  as a common 
factor and obtained a term, 

9log6log xx − xlog
)3(log −x , that is undefined.  Additionally, it was noted 

that this term was further simplified to 3logx− ! 
  
Another quite common misconception arose from participants thinking that 

)log(loglog yxyx ÷=÷ .  This misconception is well illustrated by the typical (but 

faulty) solution:  9log27log 229log
27log

2
2 ÷=   =  )927(log2 ÷   =  .  Many more 

examples could be given but the principle is essentially the same.  Students take 
new knowledge and try to make sense of it using previously learned schema.  
Sometimes they are successful, and sometimes they are not, but when they develop 
misconceptions they are not without some sort of logic.  The roots of such flawed 
understandings are impossible to establish as they are likely a combination of 
factors: the student’s own ideas, imprecise statements made by the teacher, friends’ 
explanations that are incomplete, and so on.  Finding the cause, however, is no less 
important than a realisation that such misconceptions are common and instruction 
must specifically take the likelihood of their occurrence into account.   

3log2

 
Implications for Instruction 

The results of this study point to certain kinds of errors as being quite common, 
notably those where students fail to see the logarithm as a number.  It is this failure 
that then leads them to pull expressions with logarithms apart and do things such as 
cancel the word “log”.  However, when one chooses to introduce the topic, we all 
want students to be able to evaluate and understand the meaning of expressions like 

 or .  We think it is useful to take some time at the start and have 
students first read the logarithmic expression and then explain its meaning before 
trying to evaluate it.  So, for example, if they were presented with , have 
them read it as “log to the base 2 of 32” and then give its meaning as “the exponent 
required on the base 2 to produce the value 32”.  Then they can easily evaluate the 
expression to give 5.  This is an attempt to get them to see that the expression 

 is not three separate entities but rather a single numerical value which is in 
fact an exponent.  There are very few logarithmic expressions that secondary 

1000log10 25log5

32log2

32log2



66 Working with logarithms 

students encounter that cannot be evaluated by going back to this basic and 
fundamental understanding. 
  
Consider the expression . A typical algebraic approach would be to let 

 and then rewrite this equation in exponential form as .  

Substituting for x yields the fact that .  There is nothing mathematically 
wrong with this approach; however, there is a tendency on students’ parts to simply 
memorise how to translate between logarithmic and exponential form just in terms 
of where the place holders are.  In other words when faced with an expression in 
logarithmic form they put the small number as the base, the number after the log as 
the result and then the number on the other side of the equal sign as the exponent.  
This piece-meal re-arrangement further reinforces the incorrect idea that somehow 
the expression  is made up of separate pieces.  Recall also that this question 
was done correctly by only 6% of the respondents.   

5log22
52 =x5log2=x

52 5log2 =

5log2

  
Despite the initial difficulty, it may be preferable to have students evaluate the 
expression  by going back to fundamentals.  Ask them to explain the meaning 
of .  It is “the exponent required on the base 2 to produce the result 5”.  
Consequently if we put this exponent on 2 we should not be surprised to get 5! 

5log22
5log2

 
New notation is always difficult for students and the  notation is especially so 
because it bears a resemblance to algebraic notations with which they are familiar.  
It is not surprising that students commonly misconstrue the notation as a variable, 
rather than an operator.  For instance,  is quite often mistaken as the product 
of and c, which appears to resemble the associative law of multiplication if 

, and are treated as variables.  So, it is important for teachers to make clear 
at the beginning of the topic what the notation  actually represents.  They can 
explain and emphasise to students that the notation in the term  is actually an 
instruction (or an operator) to find the exponent required on the base a to give the 
value b, and that , when treated as a whole, is simply the exponent to be 
found.  For instance, in the case of ,  is an operator on to find the 
exponent required on the base a to give the value bc .  Alternatively, the use of 
brackets to distinguish clearly the difference between  and , 
followed by an interactive discussion with students to talk about the difference, in 
the initial stage of learning may also be helpful.  Regardless of the strategy used, 
students should know how to interpret logarithmic notations correctly.  For instance, 
it should be clear to them that  is taken to mean , and not . 

balog

bcalog
balog

alog b c

alog
balog

balog
bcalog alog bc

)(log bca cba )(log

bcalog )(log bca cba )(log
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If teachers are aware of these common errors and their possible causes, they can 
actually use them as opportunities for learning rather than see them as inevitable 
problems. For example, knowing that students may be tempted to think that 

 , teachers can engage students in a discussion of the 
answer to the question 

)(logloglog yxyx aaa +=+

3log2log 66 + , to decide whether or not the answer is .  
Teachers can highlight why the answer is wrong by getting students to verify the 
values of  and  by using calculators.  With a few more similar 
illustrations, students can be convinced that although for some values of x and y it is 
true that 

5log6

3log2log 66 + 5log6

, it is not true in general.   )(logloglog yxyx aaa +=+

 
Errors can also be used as “springboards for inquiry” (Borasi, 1987, 1994) to 
address misconceptions during teaching.  Teachers can involve students in activities 
organised around the explicit study of some previously selected errors or impromptu 
errors made by the students during the lessons. For instance, a worksheet containing 
both correct and incorrect solutions to some questions on logarithms can be given to 
students to directly engage them in the error analysis and, at the same time, to 
encourage them to pursue open-ended explorations and reflections.   
 
Finally, errors can be used as springboards for cognitive conflicts to provoke 
students’ thinking and to guide them to correct their errors themselves.  For 
instance, when students obtain 50500log10 =  by thinking that  is fifty 
times as much as , they can be asked to apply the same method to evaluate, 
for instance,  just to see if the resulting answer is what they are expecting.  
The resulting answer will probably lead to a conflicting outcome if the 
misconception is present.  For this strategy to work effectively, it is important to 
provide students with immediate feedback so that errors and misconceptions are 
challenged as soon as they occur.  Similarly, it is just as important to engage them in 
an interactive discussion to talk about their work, and perhaps to justify their 
answers as well. 

500log10

10log10

100log10

 
Teachers also need to be mindful of how they say things so as not to leave the 
wrong impression in a student’s mind.  For instance, the use of phrases such as 
“times means add” and “divide means subtract” when helping students to remember 
the product rule and quotient rule of logarithms can be both misleading and 
unhelpful, and contribute to the development of quick, but faulty, rules by the 
student.  Careful written work at the whiteboard is also important.  For example, 
consider the demonstration of finding the value of  by using the change-of-7log7

 
log  7 7 

lg 
 7 

lg  7 
= =   1   

Correct Cancellation 
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7lg
7lgbase rule. After expressing  as 7log7 , it is important that teachers pay special 

attention to how the simplification of 7lg
7lg  is being written.  For instance, the short 

strokes, used to denote the cancellation of the numerator and the denominator, have 
to unambiguously cross out the entire  in both the numerator and the 
denominator because if done in a way that only shows a crossing out of the notation 
lg , then the answer of 1 may be mistaken as having been obtained by cancelling lg 
indiscriminately from both the numerator and the denominator, followed by the 
division of 7 by itself and this action tends to inadvertently reinforce precisely the 
misconception that students tend to develop.  

7lg

 
Conclusion 

It appears that although most students seem to have acquired an instrumental 
understanding of logarithms they still make many errors due to over-generalisation 
of rules learned previously.  As a result, this study supports both the common 
impression that the topic of logarithms is a difficult one for students and that there is 
a high prevalence of misconceptions in students’ thinking.  It is hoped that with a 
greater awareness of these difficulties, teachers can plan more effective teaching 
and learning experiences that recognise and anticipate the potential misconceptions 
that may arise in their students’ thinking.  
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